

FILTRASORB® 600

Granular Activated Carbon

Applications

Groundwater

Surface Water

Bottle & Brewing

Water Processing

Environmental Water

Food & Beverage

Ultra Pure Water

Remediation Water Treatment

With its enhanced high energy pore structure, FILTRASORB 600 is ideally suited for trace removal applications and offers a significant performance advantage over traditional activated carbon products used in these types of applications.

Specific applications include:

- Removal of MTBE
- Removal of DBCP
- Removal of THMs
- Removal of pesticides and herbicides
- Removal of other organics at concentrations < 1 ppm
- Potable water treatment
- Groundwater treatment
- Ultrapure water treatment
- PFAS treatment

Description

FILTRASORB 600 is a granular activated carbon for the removal of dissolved organic compounds from water and wastewater as well as industrial and food processing streams. These contaminants include taste and odor compounds, organic color, total organic carbon (TOC), and industrial organic compounds such as TCE and PCE.

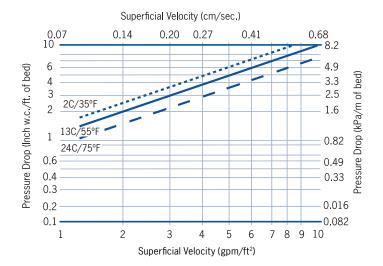
This activated carbon is made from select grades of bituminous coal through a process known as reagglomeration to produce a high activity, durable, granular product capable of withstanding the abrasion associated with repeated backwashing, hydraulic transport, and reactivation for reuse. Activation is carefully controlled to produce a significant volume of both low and high energy pores for effective adsorption of a broad range of high and low molecular weight organic contaminants.

FILTRASORB 600 is formulated to comply with all the applicable provisions of the AWWA Standard for Granular Activated Carbon (B604) and Food Chemicals Codex. This product may also be certified to the requirements of NSF/ANSI 61 for use in municipal water treatment facilities. Only products bearing the NSF Mark are

certified to the NSF/ANSI 61 - Drinking Water System Components - Health Effects standard. Certified Products will bear the NSF Mark on packaging or documentation shipped with the product.

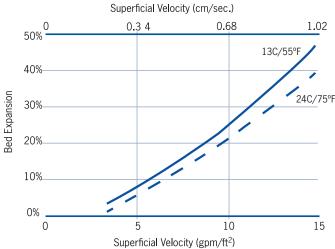
Features / Benefits

- Produced from a pulverized blend of high quality bituminous coals resulting in a consistent, high quality product.
- Carbon granules are uniformly activated through the whole granule, not just the outside, resulting in excellent adsorption properties and constant adsorption kinetics.
- The reagglomerated structure ensures proper wetting while also eliminating floating material.
- High mechanical strength relative to other raw materials, thereby reducing the generation of fines during backwashing and hydraulic transport.
- Carbon bed segregation is retained after repeated backwashing, ensuring the adsorption profile remains unchanged and therefore maximizing the bed life.
- Reagglomerated with a high abrasion resistance, which provides excellent reactivation performance.
- High density carbon resulting in a greater adsorption capacity per unit volume.


Specifications ¹	FILTRASORB 600
lodine Number, mg/g	850 (min)
Moisture by Weight	2% (max)
Abrasion Number	80 (min)
Trace Capacity Number, mg/g	16 (min)
Screen Size by Weight, US Sieve Series	
On 12 mesh	5% (max)
Through 40 mesh	4% (max)
¹Calgon Carbon test method	

Typical Properties*	FILTRASORB 600
Apparent Density (tamped)	0.62 g/cc
Water Extractables	<1%
Non-Wettable	<1%

^{*}For general information only, not to be used as purchase specifications.


Typical Pressure Drop

Based on a backwashed and segregated bed

Typical Bed Expansion During Backwash

Based on a backwashed and segregated bed

